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WEAK LOCALLY HOMOGENEOUS TURBULENCE AND HEAT 

TRANSFER WITH UNIFORM NORMAL STRAIN 

by Robert G. Deissler 

Lewis Research Center 

SUMMARY 

Turbulence and longitudinal heat transfer for an axisymmetric accelerating or decel- 
erating flow were analyzed. The analysis was based on generalized two-point correlation 
equations, which were obtained from the incompressible Navier-Stokes, continuity, and 
energy equations. Viscosity, thermal conductivity, and the effects of mean strain were 
retained in the analysis, but the turbulence was assumed to be weak enough to neglect the 
triple correlation terms in the equations in comparison with the other terms. The cal- 
culated longitudinal turbulent heat transfer in the decelerating case was discussed in con- 
nection with the heat transfer at a stagnation point. 

INTRODUCTION 

This study is a continuation of work reported in references 1 and 2. In reference 1, 
weak locally homogeneous turbulence in a compressible flow with a mean longitudinal 
strain is analyzed. Reference 2 considers the turbulence in incompressible flow through 
a cone. The work in those references is, in turn, closely related to that of Pearson 
(ref. 3) and differs from earlier work mainly in the inclusion of the effects of viscosity 
and finite strain rates on the turbulence. 

dU2/dx2, and dU3/dx3 on weak locally homogeneous turbulence and on longitudinal 
turbulent heat transfer is considered. Longitudinal turbulent heat transfer is of impor- 
tance, for instance, in considering heat transfer near a stagnation point. Locally homo- 
geneous herein means that the intensity of the turbulence does not vary appreciably over 
a correlation or mixing length. Shear s t resses  are assumed to  be absent, and the flow 
is considered incompressible and axisymmetric. The turbulence portion of this work 
(no heat transfer) has been considered by Pearson (ref. 3). Additional results for the 

In the present work, the effect of uniform mean velocity gradients dUl/dxl, 



turbulence are given herein, inasmuch as Pearson gave results only for the accelerating 
case and did not include turbulent vorticities or spectra. Instead of a steady-state locally 
homogeneous but longitudinally varying turbulence, as considered herein, Pear son con- 
sidered a homogeneous time-varying turbulence. The two treatments, however, give the 
same results. 

transverse direction but only locally homogeneous in the longitudinal direction. The 
mean axial velocity is taken as uniform over a cross section. The turbulence is initially 
isotropic but is allowed to become anisotropic under the distorting influence of the mean 
flow. The basic equations required in the analysis will be considered in the next section. 

The turbulence and turbulent heat transfer are assumed to be homogeneous in the 

BASIC EQUATIONS 

The equations for locally homogeneous turbulent heat transfer will be considered 
first; the equations for the turbulence itself were obtained from reference 2. By writing 
the incompressible Navier-Stokes and energy equations at  two points in the turbulent fluid, 
reference 4 (eq. (11)) shows that 

Figure 1. - Vector configuration for two-point 
correlation equations. 

where the vector configuration for correlations between 
fluctuating quantities at points I? and P' is shown in 
figure 1. The quantity T is the fluctuating component 
of the temperature at P, uk and u! are fluctuating 
velocity components at I? and P', Uk and U! are 
mean velocity components, T is the mean tempera- 
ture at P, xk and xk are space coordinates, t is 
the time, p is the density, v is the kinematic viscosity, 
a is the thermal diffusivity, and p is the instantaneous 
pressure. The overbars designate correlations or aver- 
aged quantities. The subscripts can take on the values 1, 
2, or 3, and a repeated subscript in a term indicates a 
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summation. (All symbols are defined in the appendix.) From equation (17) in refer- 
ence 4, 

axk ax! axj % 
J 

p ax! ax! 
J J  

- 1  
= 3 (xk + xk) in equa- Introducing the new independent variables rk = x i  - Xk and (xk) 

tions (1) and (2)  results in (fig. 1) m 

a -  1 - TU! + - (Uk + Uk) 
a t ' 2  

m 

2- % a Tu' a L Tu. a TU 

m m m 
j (3) + (v - a!) j + (v + a!) 1 

4 
+-  (v + a!) 

a(x,> ark ark ark 

For locally homogeneous turbulence and turbulent heat transfer, the turbulence is 
considered homogeneous over a correlation length, or the scale of the inhomogeniety is 
much greater than the scale of the turbulence. Thus, a quantity such as 
a m!/a(Xk) a(xk) in equation (3) will be negligible compared with a ark. 
(A calculation for axially decaying turbulence without mean velocity gradients, ref. 5, 
fig. 3, implies that this is a good approximation except very close to the virtual origin 
of the turbulence. ) In general, for locally homogeneous turbulence, a/a(xi) 

Also, for that type of turbulence, the mean velocity and mean temperature will vary lin- 

2- L 
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early over distances for which correlations a r e  appreciable so that aU!/axk = aU./lIxk = 

aTm/a(xk) . Finally, in order to make the set of equations determinate, the turbulence 
m 

is assumed to be weak enough to neglect terms containing triple correlations. The tur- 
bulence in a flow with large velocity or  temperature gradients may not have to be as weak 
as that in a flow without mean gradients. The terms containing those gradients may be 
large compared with triple correlation terms, even if the turbulence is moderately strong. 
Equations (3) and (4) become, for steady state at a fixed point, 

J 3 
a(uj) p(xk)  ? uk - u k  = rl a(uk)m/a"l, ? <uk + uk)/2 = (uk) ? and aT/lIxk = 

m m m m 

The case of uniform axisymmetric strain with no shear ant. with temperature gradient in 
the longitudinal direction is considered herein. Equation (5) for j = 1 and equation (6) 
then become 

n 

where (1) is not a tensor subscript. Equations (7) and (8) can be converted to spectral 
form by introducing the usual three-dimensional Fourier transforms defined as follows: 
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Then, using continuity and the inverse transform of equation (10) gives 

where 
Taking the Fourier transforms of equations (7) and (8)  results in 

is a wave number vector having the dimension l/length and djf = dK1 dK2 d ~ ~ .  

where two equations have been combined into one by eliminating <'. 
For axisymmetric strain, = s ( ~ ) ;  and by continuity of the mean flow, 

7 2 )  = s(3) = -(;)s(l) (14) 

The turbulence is also assumed to be homogeneous in the transverse direction and changes 
only in the longitudinal o r  x1 direction, so that 

To simplify the notation, let (U,) U, (xl) = x, and s ( ~ )  s in the remainder of the 
m m 

paper. Then equation (13) becomes 
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*l 1 *1 1 *l K1 2 S K I  - + - SK2 - +- SK 3 - = -bql l  - syl + 3 s  - y1 - (a + U ) K  yl U- - (16) 

*l 

ax a K 1  2 aK2 aK3 K 
2 

where use was made of the continuity relation in the form ~~y~ + ~~y~ = - K ~ Y ~ .  Corre- 
sponding expression for qll and qii a re  given as equation (17) and (18) in reference 2.  
These expressions a r e  

and 

For uniform s = dU/dx, 

s(x - 
c = - = l +  U xo) = 1 + x* 

uO uO 

Equations (16), (17), and (18) can be written in terms of c as 
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SOLUTIONS OF SPECTRAL EQUATIONS 

For solving equations (20) to (22), the turbulence is assumed to be initially isotropic 
(at c = l), and 

Jo 2 (cp..) = - (K 6. .  - K.K. )  9 1 J 
O 12x2 

where Jo is a constant that depends on initial conditions (ref. 5, eq. (43)). 
initial condition on y1 (at c = l), it is assumed that 

For the 

That is, the turbulence-producing grid is assumed to be unheated, so that the temperature 
fluctuations are produced by the interaction of the mean longitudinal temperature gradient 
with the turbulence. Equation (23) appears to be the simplest condition that gives results 
that, at all values of x, reduce to those for isotropic turbulence as the mean strain goes 
to zero. The use of that initial condition for cp.. implies that Pearson's parameter 
w0/s approaches 00, where K~ is a characteristic initial wave number of the turbulence 
(ref. 3). Thus, the present results should be applicable for large kinematic viscosity, 
small initial turbulence scale, o r  small strain rate. The case vfc0/s - 00 was not con- 
sidered by Pearson. 

Equations (20) to (22) can be solved by methods similar to those given in reference 6. 
Solutions of these equations subject to the initial conditions given in equations (23) and (24) 
are,  in dimensionless form, 

2 4 

2 
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2 
(C3KT2 4- K S 2  + KZ2)  + C3Kz2 + K Z 2  + 

=p{- 2 [2’ - (1 + C)KT2 + C-’(Kz2 + KZ2$ 

where 

* v  Y 1  =-Y1 

V Pr =-  
CY 

It can be seen that yT, qTl, and qri are functions only of c, K:, and Frandtl number. 
For Pr = 1, equation (25) can be integrated to give 

1 

12n 
yr =- (c - 1) 

2 
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In order to integrate over wave number space, spherical coordinates are introduced 
as follows: 

K1 = K cos e (334 

K~ = K cos q sin 8 (33b) 

K~ = K sin cp sin 8 (334 

For It = 0, equations (9) and (10) then become 

and 

where 

and 

r. J = J' L2' y j ~ 2  sin 8 dq  de (37) 

The quantities I).. and r. are functions only of the magnitude of the wave number 4 J 
and represent spectrum functions that have been integrated over all directions in wave 
number space. - - -  - 

as follows: 

2 2 The expressions for the velocity variances ul, uiui, u2, and u i  can be integrated 

9 
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2 
c(c3 - 1) + -  5 c2(c3 - 1) 

[ 3  + 2 2 2  2 
2* - 1 
u1 - 

12G c3(c + 1 p  2(c + 1)2 (c + l ) (c  + c - 2) (c + - 2) 

3 c2(c3 - 1)(c3 - 3) (2c + c  + c - 5 ) - -  
4 c + l  4 c + l  2 1 3 2  2 + -  3 ( c  + c - 2 ) +  

2 2 (c + c - 2) 

2 - c(2c6 - c3 - 1) 3 c2(c3 - 1) - _  
2 

1 * 
uiui = 

6 6  c3(c + 1) 

2 
112 .] (39) 

3 2 '  3 c(c + l ) (c  + c + 1) + c2(c3 - l)(c + 2) +3  c2(c3 - 1) (c + 1) + 
2 2 2 4 

(c + c - 2) 8(c + c - 2) 8(c + 1) 

where 
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and c = U/Uo. 

spectrum tensor is given in reference 7 as 
Another quantity of importance is the turbulent vorticity tensor wioj.  The vorticity 

2 2 
52.- = ( 6 . . ~  - ~ ~ ~ ~ ) c p ~ ~  - K cpij 
1J 1J 

As was the case for cp.., equation (43) can be integrated over all directions in wave 
number space to give 

4 

2 a . . ~  sin 8 dcp de Rij = L* J2* 1J 

The vorticity tensor is then given by 

(43) 

(44) 

Calculated turbulent velocities, vorticities, temperature-velocity correlations, and 
spectra will be considered in the next section. 

RESULTS AND DISCUSSION 

Velocity and Vorticity Variances 

2 2  Figure 2 shows turbulent velocity variances ul, u2, and u i  plotted logarithmically 
in dimensionless form. Included in the plot is the curve obtained by solving equation (21) 
as though the effects of strain were absent by omitting the second to sixth terms. This 
solution gives 

Jo 4 8 6  
- 

2 For an accelerating flow with uniform strain, the longitudinal component u1 de- 
creases more rapidly and the lateral components decrease less rapidly than they would 
if  the effects of strain were absent. For large values of U/Uo, the lateral components 
reach a steady-state value as observed in Pearson's results (ref. 3). This result differs 
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Figure 2. - Dimensionless variance of turbulent velocity components for uniform incompressible strain. 

from flow through a converging cone (ref. 2) where the increasing strain rate with dis- 
tance caused the lateral components to increase without limit as the apex of the cone was 
approached. The asymptotic equilibrium solution shown in figure 3 is given by 

JO 5/2 - -  
2 2  u2 = u3 = - (;) 

96 & 
(47) 

Thus, the solution represents a case in which the energy fed into the lateral components 
by straining action balances the energy dissipated by viscous forces. 

For decelerating flow near the virtual origin, both the longitudinal and the lateral 
components of the velocity fluctuations decrease in the direction of flow. For lower 
values of U/Uo, all components begin to increase as the effect of normal strain becomes 
greater than the effect of viscous dissipation. The region of increasing turbulent intensity 
in the decelerating case was not observed for a cone (ref. 2) where the strain rate s de- 

12 



...... . . . . .. . , , . , .. , ... . 
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--- Without effects of strain 

(pure viscous decay) 
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.1 1 10 
Longitudinal velocity ratio, c - U/Uo 

Figure 3. - Dimensionless variance of turbulent vorticity components for uniform incompressible strain. 

creased sufficiently with distance to allow the turbulence to decay. As U approaches 
zero in the present case, the turbulence components will tend to increase without limit. 
The assumption of local homogeniety will, however, tend to break down in that region, 
and the turbulence components will remain finite in a real situation. An increase in tur- 
bulent fluctuation in the decelerating flow near a stagnation point (in comparison with the 
free-stream fluctuation) has been observed experimentally in reference 8. 

The reasons for the trends observed in the turbulent velocity variances will become 

clearer if the vorticity variances u; plotted in figure 3 are considered. The dashed 
curves for no effects of strain were obtained from the equation 

- 

(48) 
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Consider first the accelerating case. Here the trends are opposite to those for the veloc- 
ity variances in figure 2; that is, the longitudinal vorticity component decays less rapidly, 
and the lateral components decay more rapidly, than they would if  the effects of strain 
were absent. Thus, the turbulent vorticity tends to become alined in the flow direction. 
That alinement occurs first, because the longitudinal vortex filaments are strengthened 
by the stretching action of the mean flow, whereas the lateral filaments are shortened and 
thus weakened; and, second, because the mean strain rotates the vortex filaments which 
were originally oblique so that their axes tend to  lie in the flow direction. The velocities 
associated with the turbulent vortex filaments will then tend to lie in the transverse direc- 
tions, in agreement with the curves for velocity variances in figure 2. As for the lateral 
components of the velocity variance, the longitudinal component of the vorticity variance 
approaches an equilibrium solution for large values of U/U, in which the vorticity gen- 
erated by the mean strain balances that dissipated by viscous action. This solution is 
given by 

For decelerating flow at low values of U/U,, the lateral components of the vorticity 
tend to increase, whereas the longitudinal component decreases more rapidly than it 
would if the effects of strain were absent. Thus, the vortex filaments tend to be alined in 
the transverse directions. This alinement occurs because the lateral vortex filaments 
are strengthened by stretching, while the longitudinal components a r e  weakened since 
they are shortened, and because the axes of vortex filaments which were originally 
oblique are rotated toward the transverse directions by the styetching action of the mean 
strain in the transverse directions. With the turbulent vortex filaments mostly alined in 
the transverse directions, the velocities associated with them can be either in the longi- 
tudinal or the transverse directions. This explains why, for low values of U/U,, the 
curves for both the longitudinal and the transverse components of the turbulent velocity 
variance in figure 2 increase in the flow direction, whereas in the curves for vorticity 
variance, only the lateral component can increase. The lateral stretching of the vortex 
filaments intensifies both the longitudinal and the transverse velocity fluctuations. 

decay are plotted in figure 4. For obtaining the ordinates in this figure, values of turbu- 
lent velocity variance with the effects of strain included (solid curves in fig. 2) are cor- 
rected to eliminate the effects of decay by dividing them by corresponding values for pure 
viscous decay (dashed curves in fig. 2). The result (after taking the square root) is di- 
vided by U/Uo to give intensity ratios that are relative to the local mean velocity. In 

Relative intensity ratios for turbulence components corrected to eliminate viscous 
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un i fo rm incompressible 
strain --- Incompressible flow in 
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in compressible flow (ref. 1) 

Longitudinal velocity ratio, c = U/Uo 

Figure 4. - Comparison of relative intensi ty ratios for tu rbu len t  components corrected 
to eliminate decay for several situations. 

addition to the present results for uniform strain in an incompressible flow, results for 
flow through a cone (ref. 2) and for uniform longitudinal strain in a compressible flow 
(ref. 1) are shown in the figure for comparison. The curves for uniform longitudinal 
strain in a compressible flow were  obtained from equations (31) and (32) in reference 1 by 
noting that U = Uo - sxo and U /v = Uo/uo. The values for pure viscous decay were 
obtained by solving equation (23) in reference 1 with all but the first and last terms de- 
leted, and again using U /v = Uo/vo and U = Uo - sxo. This solution gives (U/Uo) 

for the ordinate of the dot-dashed curve for i = 1 and (1 + U/Uo)1/2(U/Uo)-3/4/fi for 
the ordinate of the dot-dashed curve for i = 2, 3. 

The curves for the lateral components (i = 2, 3) for accelerating flow are of partic- 
ular interest because, as shown in reference 2, the ordinates of those curves give 
approximately, for certain conditions, the Stanton number ratio St/Sto for the heat 
transfer between the fluid and a wall. In obtaining that relation, the normal strain is 
assumed to be so large that changes in the Stanton number along the flow are governed 
by normal strain rather than by shear. 

The curves for the lateral components (and thus for the Stanton number ratio) for 
accelerating flow in figure 4 indicate but a slight difference in the results for uniform 

g g 

- 7/4 
g g 
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incompressible strain and for flow in a cone. That is, when plotted in this way, the re- 
sults at a given U/Uo for accelerating flow seem to depend but slightly on how the strain 
dU/dx varies along the flow. On the other hand the results for uniform longitudinal 
strain in a compressible flow lie significantly above the others. These results can evi- 
dently be explained by the fact that the stretching of the vortex filaments is more intense 
in that case, since the lateral compressive strain is absent because of the lack of a ra- 
dial flow. The dot-dashed curve might be related to heat transfer in a highly heated 
constant-area tube with fluid density changes along the length, whereas the other two 
curves are more closely related to  nozzle heat transfer in which the effects of compress- 
ibility are small (ref. 2, fig. 8). 

Figure 5 shows the effect of uniform normal strain on dimensionless longitudinal 
turbulent heat transfer q*. Since 7 is divided by the temperature gradient b, the 
ordinates can be considered as representing the variation of longitudinal eddy conductivity 
with U/Uo. Results are given for Prandtl numbers of 0.01 (liquid metals), 1 and 0.7 

With effects of strain 

(pure viscus decay) 

- --- Without effects of strain 

Decelerating flow 

I 

. ooo1 .all e 01 .1 1 
Longitudinal velocity ratio, c - U/Uo 

Figure 5. - Dimensionless longitudinal eddy conductivity for uniform incompressible strain. 

d 
Accelerating flow 

' '\ 
\ 
\ 
\ 

'\ 
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(gases), and m. As Prandtl number decreases, the eddy conductivity decreases, appar- 
ently because a turbulent eddy in a high conductivity fluid, such as a liquid metal 
(Pr - 0.01) gains or loses heat by conduction as it moves longitudinally and thus trans- 
fers heat with relatively low effectiveness (ref. 4, fig. ?). At a given Prandtl number, 
the trends in the curves are generally similar to those observed for the longitudinal cam- 

ponent of the velocity variance u: in figure 2. A notable exception, however, is that 
Tu1 reaches a maximum at low values of U and then approaches zero at U = 0, where- 

as 3 became indefinitely large as U approached zero. The ratio of maximum to min- 
imum 7u1 is greater at low Prandtl numbers. 

The curves for decelerating flow infigure 5 illustrate the large increase that normal 
strain can produce in the longitudinal heat transfer between a body and a stream in the 
vicinity of a stagnation point when free-stream turbulence is present. The eddy conduc- 
tivity would decay to very low values (dashed curves) if the effects of strain were absent. 
(The time available for decay is quite large, since the fluid velocity becomes very small 
as the stagnation point is approached.) This increase in heat transfer is in agreement 
with the experiments in reference 9 and the analysis of reference 10. The increase is 
evidently produced by the lateral stretching of vortex filaments as assumed in refer- 
ence 10. Reference 10, however, considered only transverse vortexes, whereas the 
present analysis considers random vorticity in all directions. The present analysis does 
not, however, consider the damping effect of the wall at the stagnation point (effect of 
viscous diffusion), so that the increase in turbulent heat transfer due to normal strain is 
probably exaggerated here. In fact, an attempt to calculate the heat transfer near a 
stagnation point by assuming that the maximum in the curve in figure 5 (Fr = 0.7 for 
gases) corresponds to the maximum eddy conductivity in the boundary layer, and that the 
minimum in the curve for i = 1 in figure 2 corresponds to the turbulence level in the 
undisturbed stream, gave (by dividing one ordinate by the other) increases in total heat 
transfer considerably higher than those observed experimentally. The results do indi- 
cate, however, that the combination of free-stream turbulence and normal strain (or 
lateral vortex stretching) can be an important factor in increasing the heat transfer in 
the vicinity of a stagnation point. 

- 

- 

- 

Tu r bu I e nce S pect ra 

Dimensionless spectra of components of the velocity and vorticity variances are 
plotted in figures 6 to 8. The spectra show how contributions to the dimensionless mean 
velocity or vorticity fluctuations are distributed among dimensionless wave numbers. 
Plotted in this way, the curves for no strain (U/U, = 1) reduce to a single curve that does 
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Figure 6. - Spectra of dimensionless longitudinal velocity variance u: . 
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Figure 7. - Spectra of dimensionless transverse velocity variance u r .  

. 0 2 0 r  Longitudinal 

- Dimensionless wave number, K* - uv2(x - % ) v 2 ~ / U { 2  

Figure 8. - Spectra of dimensionless transverse vorticity variance w r  
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not change with x. Thus, compari- 
son of the curves for various values 
of U/Uo shows how strain affects 
the spectrum at a given position in 
comparison with the spectrum at the 
same position with no strain. For 
instance, figure 8 shows that for de- 
celerating flow (U/Uo < l) contribu- 
tions to the transverse vorticity 
occur at smaller wave numbers 

Modified dimensionless wave number, ( V / S ) ~ / ~  K 

Figure 9. - Asymptotic equilibrium spectra for longitudinal ve- 
locity ratio U/Uo- 00. 

(larger vortexes) than they would for 
no acceleration. This trend seems 
to be congruous with the observation 
in the analysis of reference 10 that 
only the larger transverse vortexes 
are amplified by stretching in the 
neighborhood of a stagnation point. 
Figures 6 and 7 show that contribu- 

7 0 velocity ratio, tions to components of the velocity 
variance also move to lower dimen- 
sionless wave numbers as velocity 
ratio decreases. For U/Uo > 1, the 
trends ape opposite to those for de- 
celerating flow, or  contributions to 
the mean fluctuations move to higher 

c -4x10-2 Longitudinal 

I dimensionless wave numbers. 
(a) Prandtl number, 0.7. Figure 9 shows spectra corre- 

Dimensionless wave number, K* - vU2h - X , - , ~ ~ ~ ' C / U ~ ~  

(b) Prandtl number. 0.01. 

sponding to the asymptotic equilibrium 
solutions given by equations (47) and 
(49) for U/Uo -L 00. Note that the 
dimensionless quantities used in these 
spectra have been changed from those 
used in the preceding spectra in order 
to obtain finite dimensionless quan- 
tities for U - 00. The spectra in 
figure 9 are of interest because they 
show how contributions to the velocity 
and vorticity variances are distributed 

, ~- ~~- 
among wave numbers for a case in Figure 10. - Spectra of dimensionless longitudinal eddy conductivity mi. 
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which the energy fed into the turbulence by the mean strain exactly balances that dissi- 
pated by viscous action. Although the curves are in equilibrium at each wave number, 
there is not necessarily an equilibrium between production and dissipation at each wave 
number because energy can be transferred between wave numbers by the stretching of 
the vortex filaments by the mean velocity gradients as discussed in references 1, 2, 4, 
and 5. 

Spectra of the dimensionless longitudinal eddy conductivity  TU^* are plotted in fig- 
ure  IO for Prandtl numbers of 0.7 and 0.01. The shifting of the curves to lower dimen- 
sionless wave numbers as U/Uo decreases is similar to that for the spectra of the longi- 
tudinal velocity fluctuations shown in figure 6. 

- 

SUMMARY OF RESULTS 

For an incompressible accelerating flow with uniform strain, the longitudinal veloc- 
ity fluctuations decreased more rapidly, and the lateral fluctuations decreased less rap- 
idly in the flow direction than they would if the effects of normal strain were absent. 
For large values of velocity ratio, the lateral components were found to reach a steady- 
state equilibrium value, as observed in Pearson's results. This result differs from flow 
through a converging cone, where the increasing strain rate with distance caused the 
lateral components to increase without limit as the apex of the cone was approached. 

For decelerating flow at low values of velocity ratio both the longitudinal and trans- 
verse  velocity fluctuations increased in the flow direction as the effect of normal strain 
becomes greater than the effect of viscous dissipation. A somewhat similar increase in 
velocity fluctuation in the decelerating flow near a stagnation point has been observed ex- 
perimentally. This region of increasing turbulent intensity in the decelerating case was 
not observed in an analysis for flow through a diverging cone, where the strain rate de- 
creased sufficiently with distance to allow the turbulence to decay. 

Many of the trends observed for the velocity fluctuation components could be ex- 
plained by the analytical result that the vorticity became alined in the longitudinal direc- 
tion for accelerating flow and in the transverse directions for decelerating flow. 

by local mean velocity, the transverse component for accelerating flow, which can be 
related to heat transfer between the fluid and a wall, was approximately the same for 
flow in a cone and for uniform incompressible strain. On the other hand the curve for 
uniform longitudinal compressible strain lay appreciably above the others, apparently 
because of the more intense vortex stretching for that case. 

normal strain could increase that quantity to values considerably above those which it 

When the results for turbulent intensity were corrected for viscous decay and divided 

The results for longitudinal eddy conductivity in a decelerating flow showed that 
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would have if the effects of strain were absent. Thus, free-stream turbulence with nor- 
mal strain (or lateral vortex stretching) could be an important factor in increasing the 
heat transfer in the vicinity of a stagnation point. 

tended to be larger at a given location than they would be for no deceleration. The eddies 
associated with the energy and with the longitudinal eddy conductivity also became com- 
paratively larger. Spectra were also obtained for the energy and the vorticity for the as- 
ymptotic equilibrium solutions at large velocity ratios. 

i 

Turbulent vorticity spectra showed that the turbulent vortexes in a decelerating flow 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 16, 1966, 
129-01 - 09-07-22. 
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APPENDIX - SYMBOLS 

longitudinal temperature gradient, dT/dx 

longitudinal velocity ratio, U/Uo 

specific heat at constant pressure 

defined by eq. (42) 

heat-transfer coefficient 

constant that depends on initial conditions 

Prandtl number, v/a 

pressure 

defined in fig. 1 

Stanton number, h/pc U 
P / 

longitudinal velocity gradient, aU,/m(., = aU/& = a(Ul)m/a(xl) 
m 

transverse velocity gradients, aU,/m(., = a(U,) /a@,) , 
m m 

m m 
mean temperature 

time 

mean velocity component 

U1, (U,) , U mean longitudinal velocity component 
m 

fluctuating velocity component 

defined by eq. (41) , dimensionless velocity correlation 

defined in fig. 1 

longitudinal coordinate 

s(x - xo) 

uO 
thermal diffusivity 

defined by eq. (37) 



r T 

R ?. 
13 

V 

P 

7 

q i j  

v; 
*i j 

51.. 
11 

w.w 
1 j  

2 
v (x - xo) l-1 

dimensionless spectrum function for longitudinal eddy conductivity, - 
JOUO 

defined by eq. (10) 

defined by eq. (30) 

Kronecker delta 

defined by eq. (11) 

angular coordinates (see eq. (33)) 

wave number component 

defined by eq. (28) 

vorticity spectrum function, defined by eq. (44) 

3 3 
v (x - xo) 

dimensionless vorticity spectrum function, R.. 
11 

kinematic viscosity 

density 

temperature fluctuation 

longitudinal temperature-velocity correlation 

defined by eq. (9) 

defined by eq. (29) 

energy spectrum function, defined by eq. (34) 

defined by eq. (43) 

turbulent vorticity variance 
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0.0 * 
1 j  

Y7/2(X - xn) 7/2 

Ui’2 Jo 
1 3  

Subscripts: 

C corrected to eliminate viscous decay 

m at point Pm (see fig. 1) 

W without effects of strain 

0 at virtual origin of turbulence where turbulent energy would be infinite (It is 
assumed that turbulence is isotropic at xo and that strain begins to act there.) 

1 

293 in transverse direction 

Super scripts: 

in longitudinal or  flow direction 

t at point P’ (see fig. 1) 

* on dimensionless quantities 

- over averaged quantities 
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